Application of general semi-infinite programming to lapidary cutting problems
نویسندگان
چکیده
منابع مشابه
Application of general semi-infinite programming to lapidary cutting problems
We consider a volume maximization problem arising in gemstone cutting industry. The problem is formulated as a general semi-infinite program (GSIP ) and solved using an interiorpoint method developed by Stein. It is shown, that the convexity assumption needed for the convergence of the algorithm can be satisfied by appropriate modelling. Clustering techniques are used to reduce the number of co...
متن کاملSemi-infinite linear programming approaches to semidefinite programming problems∗
Interior point methods, the traditional methods for the SDP , are fairly limited in the size of problems they can handle. This paper deals with an LP approach to overcome some of these shortcomings. We begin with a semi-infinite linear programming formulation of the SDP and discuss the issue of its discretization in some detail. We further show that a lemma due Pataki on the geometry of the SDP...
متن کاملA Cutting Surface Algorithm for Semi-Infinite Convex Programming with an Application to Moment Robust Optimization
We first present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems, and use it to develop an algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. The cutting surface algorithm is also applicable to problems with non-differentiable sem...
متن کاملRelaxed Cutting Plane Method for Solving Linear Semi-Infinite Programming Problems
One of the major computational tasks of using the traditional cutting plane approach to solve linear semi-infinite programming problems lies in finding a global optimizer of a nonlinear and nonconvex program. This paper generalizes the Gustafson and Kortanek scheme to relax this requirement. In each iteration, the proposed method chooses a point at which the infinite constraints are violated to...
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Operational Research
سال: 2008
ISSN: 0377-2217
DOI: 10.1016/j.ejor.2007.01.057